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Abstract. A two-chain ladder model is considered that is described by the strong-coupling
t–t ′–J–J ′ Hamiltonian. For the case of two holes moving in a background of antiferromagnetically
interacting spins, exact, analytical results are derived for the ground-state energy and low-lying
excitation spectrum. The ground state is a bound state of two holes with total spinS = 0. The
charge excitation is gapless and the spin excitation has a gap. The corresponding wave functions
are also exactly determined. The bound hole pair is found to have symmetry of the d-wave type. In
the limit of strong rung coupling, the model maps onto an effective hard-core-boson model which
exhibits dominant superconducting pairing correlations.

1. Introduction

In the last few years, ladder systems have been studied extensively [1–3]. Interacting electron
systems in one dimension (1D) are fairly well understood. There are several rigorous results
available for such systems [3]. Powerful techniques like the Betheansatz[4] and boson-
ization [5] have yielded much useful information about such systems. After the discovery of
high-Tc cuprate superconductivity, 2D interacting electron systems acquired new significance
due to the fact that the dominant electronic and magnetic properties of the cuprate systems are
associated with the CuO2 plane [6,7]. There are, however, very few rigorous results available
for 2D systems. Ladders, consisting ofn-chains coupled by rungs, interpolate between 1D
and 2D and their study is expected to be useful for a proper understanding of interacting many-
body systems. The possibility of deriving rigorous results is also greater. A number of ladder
systems have been discovered recently exhibiting a variety of interesting phenomena [1–3].
Physical insight obtained from the study of ladders is also expected to be relevant for high-Tc
cuprate systems. The cuprates, in the spin-disordered phase, are doped spin liquids. Below
optimal doping levels and well above the superconducting transition temperatureTc, there are
experimental signatures of a spin gap (SG) [7] opening up. The ‘gap’ has been ascribed to pre-
formed Cooper pairs of holes which lack the long-range phase coherence of the superconducting
state. The Cooper pairs become phase coherent only belowTc giving rise to superconductivity.
Dagottoet al [8] were the first to show that a two-chain ladder has a spin-liquid ground state
and a SG in the excitation spectrum. On doping the system with holes, binding of holes in
pairs is possible, giving rise to dominant superconducting (SC) pairing correlations. A few
years later, a hole-doped two-chain ladder system Sr0.4Ca13.6Cu24O41.84 was discovered which
exhibits superconductivity under pressure [9].
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The relationship between the ‘pseudo-’spin gap, pre-formed hole pairs and super-
conductivity is not well understood in the case of cuprate systems. For the ladder system, the
SG is a real gap and the binding of holes leading to SC pairing correlations can be explicitly
demonstrated. Resistivity measurements for the ladder compound(Sr,Ca)14Cu24O41 show
unusual temperature dependence as in the case of cuprates [10] highlighting further similarities
between the two systems. Bose and Gayen [11–14] have constructed a two-chaint–J -type
ladder model for which several exact, analytical results can be derived in the undoped as well
as doped cases. For two holes, the possibility of binding of holes was suggested but the bound-
state spectrum was not derived. In section 2 of this paper, we give a detailed derivation of the
low-lying spin and charge excitation spectrum of the ladder model in the two-hole sector. We
show that the ground state consists of a bound pair of holes. The spin excitation spectrum has
a gap and the charge excitation is gapless. The two-hole wave functions are also computed.
The two-hole bound-state wave function is shown to have modified d-wave symmetry. All
these results are exact and analytic in nature. The dominance of SC pairing correlations in the
ladder model is shown in an approximate, analytical manner.

2. The exact two-hole excitation spectrum

The two-chain ladder model consists of two chains, each described by at–J Hamiltonian,
coupled byt ′–J ′ interactions between them (figure 1). The model is described by thet–t ′–J–J ′

Hamiltonian:

H = −
∑
i,j,σ

tij (1− ni−σ )C†
i,σCj,σ (1− nj−σ ) + h.c. +

∑
〈ij〉

Jij ESi · ESj

= Ht +Ht ′ +HJ +HJ ′ . (1)

The constraint that no site can be doubly occupied is implied in the model. The hopping integral
tij has the valuet for nearest-neighbour (NN) hopping within a chain and also for diagonal
transfer between chains (solid lines in figure 1). The corresponding spin–spin interactions
Jij are of strengthJ . The spins have magnitude 1/2. The hopping integral across vertical
links (broken lines) connecting two chains has the strengtht ′. The corresponding spin–spin
interaction strengthJij is J ′. We assumet and t ′ to be positive. In the conventional two-
chain spin ladder, the diagonal interaction and hopping terms are absent. The inclusion of the
diagonal terms of the same strength as the intra-chain ones enables one to reduce the difficult
N -body problem to an easily solvable few-body problem. The conventional spin-ladder model,
in the absence of diagonal terms, constitutes a many-body problem for which no simplification
occurs. The only exact results, which are available, are numerical results based on exact
diagonalization of finite ladders [1,2,15].

Figure 1. The spin-ladder model described by thet–t ′–J–J ′ Hamiltonian (equation (1)).

In the half-filled limit, i.e., in the absence of holes, thet–t ′–J–J ′ Hamiltonian in (1)
reduces toHJ +HJ ′ . The exact ground stateψg (for J ′ > 2J ) consists of singlets along the
rungs of the ladder [11]. The ground-state energyEg = −(3J ′/4)N , whereN is the number
of rungs. An exact excited state can be constructed by replacing a singlet by a triplet. Creation
of a triplet costs an amount of energyJ ′/4, so the spin gap1SG = J ′. The excitation is
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localized and has no dynamics. Let us now consider the case of a single hole doped into the
ladder. In the presence of holes a single rung can exist in nine possible states: (i) one empty
state, (ii) two bonding states, (iii) two anti-bonding states, (iv) one singlet state and (v) three
triplet states. These states are shown below:
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A single hole hops in a background of antiferromagnetically interacting spins. This,
in general, is a difficult many-body problem because as the hole hops it gives rise to spin
excitations in the system. The inclusion of diagonal hopping terms in our model leads to a
cancellation of all the terms containing spin excitations, resulting in a perfect, coherent motion
of the hole. We illustrate this through an explicit example. Consider a single hole in a bonding
state, located in themth rung. All other rungs are in singlet spin configurations. A pictorial
representation of the state is∣∣∣∣ ∣∣∣∣ ∣∣∣∣ · · · 1√

2
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↑
)
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)
. (3)

The state is an exact eigenstate of theJ, J ′, t ′-part of thet–t ′–J–J ′ Hamiltonian. Let us now
applyHt to the state. Since background electrons are fermions, their ordering is important
and one has to keep track of signs during interchanges. The ordering of fermions follows the
convention

1 3 5 · ·
2 4 6 · ·.

On operating withHt on the state shown in (3), one gets

Ht
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In each case, states in the second column are obtained due to diagonal hopping of the hole.
There is a cancellation of the terms containing parallel spin pairs and the final state is given by∣∣∣∣

m

1√
2

( ↑
O

+
O

↑
)
m+1

. (4)

One finds that the hole accompanied by a free spin-1/2 moves coherently by one lattice
unit (compare with equation (3)). The eigenvalue problem now becomes very easy to solve.
Let

9(m) =
∣∣∣∣ ∣∣∣∣ ∣∣∣∣ · · · 1√

2

( ↑
O

+
O

↑
)
m

∣∣∣∣
(m+1)

· · · (5)

9 = 1√
N

N∑
m=1

eikm9(m). (6)

9 is an exact eigenstate of thet–t ′–J–J ′ Hamiltonian with the energy eigenvalue

E1 = 2t cos(k)− t ′ + 3J ′/4. (7)

The energy is measured with respect to that of the ground-state energy in the undoped state.
References [11,12] give a detailed discussion of the single-hole spectrum for both bonding and
anti-bonding hole states. For conventional spin ladders, Troyeret al [15] have found numerical
evidence of quasi-particle (QP) excitations carrying charge +e and spin-1/2. The charge and
spin may be located on different rungs. In the exact eigenstate of equation (6), the positively
charged hole and the spin-1/2 are always located on the same rung. We refer to the composite
object as a hole QP.

Let us now consider the case of two holes. The two holes can be introduced on the same
rung or on separate rungs. Other rungs are in the singlet spin configurations. If the holes are
located on two separate rungs, there are two free spins which can combine to give either a
triplet or a singlet. In the triplet sector, the two hole QPs can scatter against each other giving
rise to a continuum of scattering states with energy

Econt = 4t cos(K/2) cos(q)− 2t ′ + 3J ′/2. (8)

K (=k1 + k2) andq (=(k1 − k2)/2) are the centre-of-mass momentum and the relative
momentum wave vectors. The two-hole ground state belongs to the singlet sector. The exact
eigenvalue equations have already been derived in reference [13] but a full analysis of these
equations has so far not been carried out. Define the wave functions

φ(m1, m2) = 1

2
√

2
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and

φ(m,m) =
∣∣∣∣ ∣∣∣∣ · · · OOm · · ·

∣∣∣∣ ∣∣∣∣. (10)

Define also the Fourier transforms

φ(m,m + r) = 1√
N

∑
K

exp[iK(m + r/2)]φK(r) (11)

for 06 r 6 N/2− 1 and

φ(m,m +N/2) =
√

2

N

∑
K

exp[iK(m +N/4)]φK(N/2). (12)
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The two holes are separated by a distancer. From the periodic boundary condition and for
r 6= N/2, the allowed values ofK areK = (2π/N)λ, with λ = 0, 1, 2, . . . , N − 1. For
r = N/2, the allowed values ofK are odd multiples of 2π/N . An eigenfunction in the
momentum space is given by

9K
e =

N/2−1∑
r=0

a(r)φrK (13)

whereK is an even multiple of 2π/N . WhenK is an odd multiple of 2π/N , the eigenfunction
is9K

0 and the sum in equation (13) runs from 0 toN/2. The exact eigenvalue equations for
both cases are given in reference [13]. WhenK is an even multiple of 2π/N , the amplitudes
a(r) have the form

a(r) = sin[q(N/2− r)] for 1 6 r 6 N/2− 1. (14)

The energy eigenvalues are obtained by simultaneously solving the equations

ε = 2T cosq (15)

ε +
3J

4
= 4T 2

ε + 3J ′/4− 2t ′
+
T sin[q(N/2− 2)]

sin[q(N/2− 1)]
(16)

whereε = E− 3J ′/2 + 2t ′ and, as before, energyE is measured w.r.t. that of the ground state
in the undoped case. The energies for real values ofq correspond to free hole states. Energies
for bound and anti-bound states are obtained by makingq complex. WhenT is +ve, making
the changesq → iq andq → π + iq, one gets the energies for anti-bound and bound states,
respectively. WhenT is negative, the reverse is true. Similar results are obtained whenK is
an odd multiple of 2π/N .

We now study the eigenvalue problem in the limitN → ∞. The continuum of hole
excited states, for realq, is given by equation (15). For complexq, bound and anti-bound
states are obtained. Let us now replaceq by π + iq in equations (15), (16). SinceN is large,
equation (16) reduces to

ε +
3J

4
= 4T 2

ε + 3J ′/4− 2t ′
− T e−q . (17)

From a simultaneous solution of equation (15) (withq replaced byπ + iq) and equation (17),
one gets the following cubic equation in eq :

e3q − e2q

[
3J + 3J ′

4T
− 2t ′

T

]
+ eq

[
3J

4T 2
(−2t ′ + 3J ′/4)− 3

]
−
(

3J

4T

)
= 0. (18)

The exact, analytic solutions of a cubic equation are given in reference [16]. For a physical
solution, eq is greater than or equal to 1. There are at most two physical solutions of the cubic
equation in (18). Once a solution for eq is obtained, the energy eigenvalue is obtained from
equation (15) (withq replaced byπ + iq). For positive values ofT , one gets the solution for
a bound state of two holes and forT −ve, a solution for the anti-bound state is obtained. The
other values of the excitation branches are obtained by symmetry. Figure 2 shows the exact
energy spectrum for the bound state, a continuum of scattering states and anti-bound states
of two holes forJ = t = t ′ = 1 andJ ′ = 2J . Figure 3 shows the same for the parameter
valuesJ/t = 0.25, t = t ′ = 1 andJ ′ = 2J . The bound state of holes is obtained irrespective
of the value ofJ/t being less than or greater than 1. Dagottoet al [8] were the first to show
the binding of two holes in a two-chain ladder system. Their finding was based on exact
diagonalization of finite-sized ladder systems. Later, Troyeret al [15] also found evidence for
the binding of holes in finite ladder systems. In the case of our model, we have shown exactly
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Figure 2. The exact energy spectrum (ε versusK) for the bound state, continuum of scattering
states and anti-bound states of two holes (J = t = t ′ = 1, J ′ = 2J ).

0 1 2 3 4 5 6

-4

-2

0

2

4

6

ε

K

Figure 3. The exact energy spectrum (ε versusK) for the bound state, continuum of scattering
states and anti-bound states of two holes (J = 0.25,J ′ = 2J , t = t ′ = 1).
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and analytically the binding of two holes forN →∞. For finite systems also, one can solve
the eigenvalue problem exactly.

The two-hole ground state is the bound state of two holes with centre-of-mass momentum
wave vectorK = 0. The exact bound-state wave function is given by (13) withK = 0 andq
replaced byπ + iq in (14). In the limitN →∞, one obtains

a(n)

a(0)
= (−1)(n−1)e−(n−1)q a(1)

a(0)
. (19)

This result shows explicitly that the bound-state wave function has an exponential decay as
the separation between the two holes increases. With the knowledge of the eigenvalueε,
the ratioa(1)/a(0) can be computed from the exact eigenvalue equations derived in ref-
erence [13]. Figure 4 shows a plot of|a(r)/a(0)|2 versusr for the ground-state wave function
with parameter valuesJ = t = t ′ = 1.0 andJ ′ = 2J (dotted curve),J ′ = 10J (solid curve).
WhenJ ′ is much larger thanJ , the holes prefer to be on the same rung to minimize the loss in
exchange interaction energy. The hole delocalization energy along the rung is, however, lost.
WhenJ ′ andJ are comparable,|a(r)/a(0)|2 has maximum value when holes are separated
by approximately one lattice constant. The exchange energy loss is less when two holes are
on NN rungs than when they are further apart. Being on separate rungs, the holes gain in
delocalization energy. The bound state is also more extended. These results are in agreement
with the numerical results of Troyeret al [15].

The low-energy modes of a ladder system are characterized by their spin. Singlet and
triplet excitations correspond to charge and spin modes respectively. The two-hole ground

0 5 10 15 20
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

|a
(r

)/
a

(0
)|

 2

r

Figure 4. A plot of |a(r)/a(0)|2 versusr for the ground-state wave function of two holes
(equation (13)) (J ′ = 2J (dotted curve),J ′ = 10J (solid curve)).
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state is in the singlet sector and, as already discussed, corresponds to a bound state of two
holes forK = 0. Since a hole bound-state branch exists in the singlet sector, excitations with
energy infinitesimally close to the ground-state energy are possible. These excitations are the
charge excitations since the total spin is still zero and the charge excitation spectrum is gapless.

There are two distinct types of spin excitation. The first is the magnon(S = 1) excitation
of the undoped ladder with energyJ ′ measured with respect to the ground-state energy. The
second type of spin-triplet excitation appears on doping the ladder. For a pair of holes, the
lowest triplet excitation energy is−4t − 2t ′ + 3J ′/2 from equation (8). The lowest triplet
excitation energy depends on the values oft , t ′ andJ ′. The spin-gap energy1SG is the
difference in energies of the lowest triplet excitation and the ground-state (two-hole bound
state in the singlet sector) energy. Figure 5 shows1SG versusJ/t for t = t ′ = 1.0 and
J ′ = 2J . Thus, the two-chain ladder model has the feature that the charge excitation is
gapless but the spin excitation has a gap. The same result holds true for the conventional spin
ladder [2,15]. In the notation CxSy [17] (x: gapless charge andy: gapless spin excitations),
thet–J -type ladder model exists in the C1S0 (Luther–Emery) phase.

The experimental evidence of hole-based superconductivity [9] in a ladder system provides
the motivation to look for superconducting pairing correlations in our ladder model. We have
already shown the existence of the two-hole bound state. Define the pairing operator

1ij = ci↓cj↑ − ci↑cj↓ (20)

and consider the quantity

1̃ij = 〈2|1ij |0〉. (21)

0 2 4 6

0

2

4

6

∆ S
G

J/t

Figure 5. The spin gap1SG versusJ/t (t = t ′ = 1.0, J ′ = 2J ).
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|0〉 and|2〉 are the ground states in the case of zero and two holes respectively. For our ladder
model, both of those ground states are exactly known and one can verify that1̃ii+x̂ and1̃ii+ŷ

have opposite signs;̂x and ŷ denote unit vectors in thex-direction (along the chain) andy-
direction (along the rung). This is a signature of d-wave pairing and shows that the bound state
of two holes has symmetry of the d-wave type. In the case of cuprate superconductors, there
is much experimental evidence that the pairing wave function has d-wave symmetry [18].

In the large-J ′ limit, the ladder model can be mapped onto an effective boson model [15].
The physical picture is that of bound hole pairs existing along rungs and moving in a back-
ground of rung spin singlets. The hole pairs can be considered as hard-core bosons. The pair
hopping matrix element to second order in perturbation theory is

tb = 2t2

3J ′/4− 2t ′
. (22)

There is also an interactionVb between two hole pairs on NN rungs. To second order in
perturbation theory,

Vb = 4t2

3J ′/4− 2t ′
. (23)

Both tb, Vb � J ′ and one can map the ladder model onto an effective hard-core-boson model
on a chain with NN interaction:

Heff = −tb
∑
i

(b
†
i bi+1 + h.c.) + Vb

∑
i

nini+1. (24)

b
†
i is the hard-core boson creation operator, creating a hole pair on the rungi andni = b†

i bi
is the corresponding number operator. There is a well-known mapping between the effective
boson model and the quantumXXZ spin model in a magnetic field [19], the Hamiltonian of
which is given by

Hxxz =
∑
i

[JzS
z
i S

z
i+1 + Jxy(S

x
i S

x
i+1 + Syi S

y

i+1)] − h
∑
i

Szi . (25)

The operator transformations connectingHeff andHxxz are

bj = S†
j b

†
j = S−j nj = 1/2− Szj . (26)

There is a one-to-one correspondence between the phases of the spin model and those of the
boson model. The disordered paramagnetic phase corresponds to the metallic phase for charged
bosons. The AFM Ńeel-type order in thez-direction (whenJz > Jxy) describes the ordering
of bosons on the lattice. For charged bosons, one obtains an insulating charge-ordered phase.
The transition from the paramagnetic to the AFM phase represents a metal–insulator transition.
The AFMXY order(Jxy > Jz) is characterized by a two-component order parameter and in the
bosonic language corresponds to the off-diagonal long-range order of a superfluid condensate.
For charged bosons, this is the SC phase.

For theXXZ chain, the asymptotic forms of the correlation functions have been obtained
by Luther and Peschel using bosonization theory [20]. For|Jz/Jxy | 6 1, the expressions for
the correlation functions in the limit of largex and zero magnetic field are

〈Sz(x, t)Sz〉 ∼ cos(2kF x)x
(−1/θ) (27)

〈S†(x, t)S−〉 + 〈S−(x, t)S†〉 ∼ x−θ (28)

where the exponent

θ = 1

2
− π−1 arcsin(Jz/Jxy). (29)
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For the equivalent bosonic model, the correlation functions corresponding to (27) and (28) are
the charge-density-wave (CDW) correlation〈nrn0〉 and the superconducting (SC) correlation
〈b+
r b0〉. The SC correlations are dominant ifθ < 1. For our ladder model,Jz = Vb and

Jxy = −2tb = −Vb, i.e., for larger the CDW and SC pairing correlations exist. The
transformed Hamiltonian (equation (25)), however, contains a magnetic field term. In the
presence of the magnetic fieldh (h = Vb), the spin chain with|Jz/Jxy | = 1 is in a spin-flop
phase [21] which is equivalent to the SC phase in the bosonic theory. Thus for our ladder
model, the SC pairing correlations are dominant for largeJ ′.

3. Conclusions

We have considered a two-chaint–J ladder model for which several exact, analytical results
can be derived for the case of two holes. Inclusion of the diagonal exchange and hopping terms
enables us to reduce the originalN -body (N − 2 spins and two holes) problem to an effective
two-body problem which is easily solved. The ground state is a bound state of two holes with
centre-of-mass momentum wave vectorK = 0 and total spinS = 0. The bound-state wave
function has modified d-wave symmetry. The charge excitation is gapless whereas the spin
excitation has a gap. All of the results derived by us are in agreement with the numerical
results for the conventional two-chain spin ladder. In the strong-coupling limit, our results are
the only exact, analytical results for the lightly doped two-chaint–J ladder. For more than
two holes, we have not been able, as yet, to calculate the ground state and low-lying excitation
spectrum exactly and analytically.

Recently, in a remarkable paper [22], Lin, Balents and Fisher have studied weakly
interacting electrons hopping on a two-chain ladder. Using bosonization and perturbative
renormalization-group (RG) analysis, they have shown that at half-filling the model scales
onto the Gross–Neveu (GN) model. The GN model happens to be integrable and has SO(8)
symmetry. For repulsive interactions, the two-chain ladder exhibits a Mott insulating phase at
half-filling with d-wave pairing correlations. The exact energies of all of the low-lying excited
states can be calculated because of the integrability of the GN model. Linet al further studied
the effects of doping a small density of holes into the d Mott spin-liquid phase at half-filling.
Again, for a pair of holes, the ladder system exists in a SG phase with hole binding in the ground
state and gapless charge excitations. Scalapino, Zhang and Hanke [23] have considered the
strong-coupling limit of a two-chain ladder model with local interactions designed to exhibit
exact SO(5) symmetry. This model too has a SG phase with hole pairs in the ground state.
Numerical calculations on thet–J [15] and Hubbard ladders [24] also show the existence of
such a phase. Thus, the SG phase with bound hole pairs appears to be a universal feature of the
two-chain ladder system irrespective of the strength of the coupling. This phase also exhibits
superconducting pairing correlations. For ladder systems the existence of a SG is favourable
for the binding of holes. As mentioned in the introduction, the existence of a ‘pseudo-SG’
in the cuprates is conjectured to be associated with pre-formed Cooper pairs of holes. This
conjecture is supported by our rigorous demonstration that the ground state in the SG phase
consists of a bound pair of holes.
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